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Executive Summary 

There is a need for the development of safety analysis tools to enable the Pennsylvania 
Department of Transportation (PennDOT) to better assess the safety performance of road 
segments in the· Conunonwealth. The objective of this project was to conduct analyses of 

existing PennDOT data to provide PennDOT with tools to better manage road safety, reducing 
fatalities, injuries, and property damage losses in the Commonwealth. A particular objective was 
to conduct studies that would produce products of use in PennDOT's Crash Data Analysis and 

Retrieval Tool (C-DART). 

Identifying Sites with Promise 

One critical task in the project was the identification of .. Sites With Promise" (i.e., SWiPs). A 
SWiP is a road segment with a crash risk above the mean for comparable segments (those from 

one of six road classes considered in this research: urban and rural two-lane highways, urban and 
rural multilane highways, and urban and rural freeways and expressways). Identification of 
SWiPs included use of segment length and annual average daily traffic (AADT) as predictors. 

A list of SWiPs has been provided to PennDOT for potential inclusion in C-DART. The list 

includes the PennDOT designation for the link (using county, route, and segment numbering) 
along with the mean and standard deviation of the excess risk. The list is in rank order with the 
highest-risk segment listed first. This list can be used to identify those road segments that have 

an elevated risk of a crash and also offer the greatest potential for safety improvement. This 
potential for improvement arises because the site has an expected crash frequency that is 
substantially higher than comparable road segments, controlling for AADT and segment length. 

The difference in expected crashes indicates that the site is "less safe" than comparable sites, 
presumably because of some site, driver, or other characteristics; this poorer safety is an 
indication that there are likely positive actions that can be taken to improve safety. A safety 

analyst at PennDOT can use this list of SWiPs to identify high-risk locations in a given district 
and then use the other analysis capabilities of C-DART to explore differences between the 

· SWiPs and other sites in the comparison group. Such identifications should assist PennDOT in 

identifying and investing truly high-risk sites. 
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Consideration of Level of Outcome Severity 

An additional challenge in safety management is to find a way to adequately consider level of 
crash severity in the analysis. Crash frequencies are often treated as a whole, combining crashes 

of different severities of outcome (as described above). Alternatively, safety analysts may 
arbitrarily choose outcome levels for inclusion in a study (e.g., fatal and injury crashes only). 
Penn State researchers developed a sophisticated statistical model that simultaneously estimated 

the expected crash frequency for each of five levels of outcome severity ranging from fatal to 
property damage only (Aguero and Jovanis, 2009; 2008; 2007; 2006). Further, the method 
explicitly considered the correlation between crashes of different severity levels. The more 

sophisticated model reduced the standard deviation of the crash frequency estimates on the order 
of 20 percent overall and 40 percent or more for fatal and major injury crashes. This improved 
precision allows PeruillOT safety analysts to be much more confident of the estimates of the 

mean of each crash outcome. Lists of the most severe outcome road segments have been 
provided to PennDOT in county, route, segment format for inclusion in C-DART for studies that 
require specific consideration of crash outcome. One interesting outcome of the analysis (Aguero 

and Jovanis, 2009) is that fatal and serious injury crashes showed a high correlation, while they 
were only slightly correlated to moderate, low severity and property damage only outcomes. This 
supports the concept of PennDOT combining fatal and serious injury crashes together in safety 

studies. 

Consideration of Type of Collision and Demographic Factors 

To further illustrate the utility of the Penn State approach, separate analyses were conducted of 

two specific crash types: single vehicle run-off-road and multiple vehicle head-on and sideswipe 
crashes. Using a procedure similar to those described above, the team identified SWiPs for each 
crash type. These have also been provided to PennDOT for use by safety staff interested in these 

severe outcome crash types. 

The Penn State team added census records to link level data in the Harrisburg and Clearfield 

PennDOT districts. Models were estimated seeking to capture the effect of factors such as area 
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income and driver age on crash risk. A list of sites was not a required outcome, but the final 

models are included in Appendix C of this report. 

Summary 
The analyses conducted and models produced in this research shoald enhance PennDOT's ability 

to conduct safety analyses, particularly those using C-DART. The list of SWiPs contains a rank 

ordering of road segm~nts offering the greatest potential for safety improvement. The model 

containing crash severity levels should give PennDOT additional confidence when combining 

fatal and severe injury crashes in needed analyses. Lastly, the models including census data have 

explored the feasibility of using that approach to safety modeling (although additional testing is 

needed). 
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I. Introduction 
There is a need for the development of safety analysis tools to allow PennDOT to better assess 

the safety performance of road segments in the Commonwealth. 

The objective of this project was to conduct analyses of existing PennDOT data to identify sites 

of elevated crash risk. Additional analyses explore level of injury severity, the ability to estimate 

changes in numbers of expected crashes as annual average daily traffic (AADT) increases, the 

ability to identify high-risk crash types, and the development of a crash prediction model that 

includes traffic, population, and demographic factors. Overall, there is a goal of improved safety 

management on PennDOT roads so that PennDOT may be able to achieve a reduction in crash 

fatalities, injuries, and property damage losses. 

II. Project Overview 
The project drew upon the availability of a safety management system database at PennDOT that 

integrates crash, occupant, vehicle and traffic (ADT) information in an integrated searchable 

format (i.e., C-DART). Pe.tlll State has applied this data base using state-of-the-art modeling 

approaches in a series of studies of the spatial location of "high hazard" sites (1-4). The project 

was conducted and reports were delivered in a series of tasks, which are summarized in the 

following sections. 

The research team applied the statistical methods in a systematic way throughout the 

Commonwealth for the following functional classifications of roads: 

• Urban and rural two-lane roads, 

• Urban and rural multilane Interstates and expressways, and 

• Urban and rural multilane roads including arterials. 

Maps and lists of the high-risk locations were developed so PennDOT can identify corridors 

(contiguous roadway segments) for safety improvements. During this initial phase of study, only 

road segment crashes were analyzed and identified. Intersection and ramp-related crashes were 
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left for future research. High-risk locations are refelTed to in this report by the acronym 
commonly used in national research studies: Sites With Promise or SWiPs. 

Task 1: Develop Safety Performance Functions for the Commonwealth 

In order to accomplish this task, the Penn State team received the C-DART data from PennDOT 
and implemented the data in computer labs of The Thomas D. Larson Pennsylvania 
Transportation Institute (LTI). In addition, the team checked for errors and verified the accuracy 

of crash, ADT, occupant, and vehicle information for a small sample of crashes. Finally, the 
team produced estimates of the statewide sites with promise for the functional roadway 

classifications listed above. Deliverables were provided to PennDOT as lists of sites and maps 
depicting SWiP road segments. A summary of the modeling approach and sample output are 

provided in Appendix A. 

Task 2: Enhance the Analysis to Include Level of Outcome Severity 

The Penn State team enhanced the capability provided by the functions developed in Task 1 by 
considering the severity of injury outcome (e.g., fatality, injury level). These analyses evaluated 
several modeling approaches to the problem and produced a list of sites with elevated risk of a 

crash by outcome. 

In addition, PennDOT was interested in a statistical model to forecast crashes given changes in 

future travel (e.g., changes in the level of fatalities as ADT continues to grow over a 5- to 10-
year period). The Penn State team explored alternative modeling approaches to conduct these 

assessments and delivered a model that included ADT. 

Steps required to complete this task included: development of safety performance functions or a 
similar statistical approach that recognizes level of outcome severity as well as crash occurrence; 

development of a statewide safety forecasting tool to allow estimates of changes in road safety in 
future years. Deliverables included a list of sites with "high risk" of severe outcome for each of 
the six roadway functional classifications and completed development of models capable of 

estimating changes in expected number of crashes given changes in ADT. These deliverables 
are summarized along with the model development in Appendix B of the report. 
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Task 3: Conduct Research to Identify Crash Contributors and Their Relationships to 

Internal and External Data Elements, Integra te Traffic, Population and Demographic Data 

into the Analysis to Facilitate More Comprehensive Assessment of Crash Indicators 

PennDOT has indicated that it is seeking an automated (i.e., computer-based) procedure for 

identifying sites that are candidates to be treated along with an identification of the factors 

contributing to the crashes. The Penn State team conducted this assessment by identifying those 

road segments with crash types that are overrepresented within a road functional class. For 

example, for the functional class of two-lane rural roads, the Penn State team developed methods 

to compare the expected proportion of run-off-road crashes with the mean nwnber experienced 

by each segment. Two general crash types were considered: single-vehicle run-off-road and 

multi-vehicle head-on/sideswipe crashes. The research team included data from all single-

vehicle, hit-fixed-object crashes that occurred off roadway (right and left); this should provide 

coverage of the run-off-road crashes. Multi-vehicle head-on/sideswipe crashes are of interest 

because they are typically high severity. The relation to roadway variable necessary to identify 

this collision type would be "on travelway" and/or "in median." Lists of overrepresented 

segments were delivered to PennDOT with the Task 3 report. 

In addition, analyses were conducted of approaches to estimate crash risk that include traffic, 

demographic, and population factors. This assessment was conducted at the district level, 

developing models for one urban and one rural district. District 2~0 was the rural district; 

Harrisburg was the urban district. The Task 3 report included a procedure to follow for the 

identification of roadway segments that have an unusual crash pattern for the six functional 

classes of roadways and a model of the expected number of crashes (at the road segment level) 

sensitive to a reasonable initial range of policy variables. Model formulations and sample output 

are contained in Appendix C. 

Ill. Summary 
Penn State has delivered a series of products to PennDOT during this project that includes: 

• Lists of sites and maps depicting SWiP road segments, 
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• Lists of sites ranked by the seveijty of injury outcome (e.g., fatality, injury level), 

• Lists of sites with excess crash frequency of particular crash types, and 

• Models of expected crash frequency that include demographic and socioeconomic 

variables for the Harrisburg and Centre County districts. 

The Penn State team has also responded to additional requests by PennDOT to provide examples 

of how the data sets and lists developed in this research can be used in safety analyses. 
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APPENDICES 

Appendix A: Summary of Modeling Approach and Sample Output 

Penn State is currently using a state-of-the-art approach to the identification and spatial location 

of "high hazard" (i.e. , referred to in national studies as "site-with-promise" and herein as SWiPs) 

throughout the Commonwealth for the following functional classifications of roads: 

• Urban and rural two-lane roads, 

• Urban and rural multilane Interstates and expressways, and 

• Urban and rural multilane roads incluc:ting arterials. 

Maps and lists of the high-risk locations were developed so PennDOT can identify corridors 

(contiguous roadway segments) for safety improvements. During this initial phase of study, only 

road segment crashes were analyzed and identified. Intersection and ramp-related crashes were 

left for future research. 

Steps accomplished within this task include receipt of data from PennDOT and implementation 

in computer labs at The Thomas D. Larson Pennsylvania Transportation Institute (LTI); check 

for errors and verification of accuracy of crash, AADT, occupant, and vehicle information for a 

small sample of crashes; and production of estimates of the statewide SWiPs for the functional 

roadway classifications listed above. 

Overview of Method 

Full Bayes Hierarchical Models were used to estimate the Safety Performance Functions and the 

expected Excess Crash Frequency for each segment in the six road classes. This was later used to 

rank the "sites with promise." The expected excess crash frequency is defined as the expected 

number of crashes in a particular segment minus the average number of crashes expected in a 

group of similar segments. The latter is estimated using the Safety Performance Function. 

Statistical Background 

Consider the number of crashes at the ith segment and tth time period, Y;1, to be a random 

variable which is Poisson and independently distributed, when conditional on its mean ~: 
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ind 
~,lµi, - Pois(µn) (1) 

The expected number of crashes at a site can be defined as the product of the exposure to the risk 
and the relative risk of a motor-vehicle crash as fo llows: 

(2) 

where µit is the expected number of crashes at segment i, and time period t, 'lii is the exposure 

function at segment i, and time period t, and P; is the expected crash relative risk at segment i. 
The exposure or Safety Performance Function is defined as: 

n - A v~v l ~L 
'I it - t-'0 it L it (3) 

where V;, is the AADT of segment i, L;, is the length of segment i, and f3o , J3v , 13 L are 

parameters of the model. 
The relative risk (with respect to the SPF) is defined as: 

(4) 

where v1 is an unstructured random effect for segment i with a nonnal prior distribution with 
2 

mean "" 0 and variance "" cr • . The variance is modeled through the precision parameter 

't; "" t/cr! with a gamma hyperprior 't~ - Gamma(O.S,O.OOOS). The random effects are considered 

fixed over time, which allows for smoothing of the estimates and controls for regression to the 
mean bias. 

Since FB models are used, v; and therefore, p1 are estimated for all crashes for the six different 
types of segments under study. Unobserved effects can be captured by v;, reflecting individual 
differences between segments. This method allows us to estimate a mean over se'Veral years and 

directly consider changes in ADT over those years. 
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The full posterior distribution of v; is estimated in the FB analysis; consequently, the credible set 

(confidence interval) for the relative risk is estimated. 

The excess crash frequency can also be estimated using random effects. The excess crash 

frequency, cSit; is defined as the difference between the expected crash frequency at segment i at 

time t and the expected crash frequency of a group of similar sites; for example: 

oil = 11it * (exp(vJ-1) (5) 

This can be simplified to: 

(6) 

Figure A-1 illustrates the concept of excess crash frequency as used in the bayesian approach. 
The black line is the Safety Performance Function. The small squares, triangles, and diamonds 
represent the observed number of crashes per mile for three different segments. Finally, the 

bigger symbols represent the expected number of crashes per mile and the arrows measure the 
expected excess crash frequency. for each segment. Additional interpretation and discussion of 
this model was presented to PennDOT during a briefing in Harrisburg on March 10, 2008. 

The remaining pages contain summaries of the models developed during Task 2. 
The list of high-risk sites has been provided on CD, since it is lengthy. 
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Figure A-1. Safety Performance Function and expected crash frequency 

for three segments. 
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Safety Performance Functions 

Tables A-1 through A-6 show the SPFs for urban and rural roads. 

Table A-1. Urban Two-Lane SPF. 

Confidence 

Interval 

Std. MC 

Mean Dev. Error 2.50% 97.50% 

Constant -6.1450 0.0765 0.00147 -6.2930 -5.9980 

AADT 0.7440 0.0086 0.00017 0.7273 0.7609 

Length 0.9998 0.0190 0.00036 0.9628 1.0370 

Std. Dev. 0.6796 0.0067 0.00013 0.6664 0.6926 

Dhar Dhat DIC pD 

130500 122400 138500 8060 

Table A-2. Urban Interstate and Freeways SPF. 

Confidence 

Interval 

Std. MC 

Mean Dev. Error 2.50% 97.50% 

Constant -6.8460 0.1535 0.00466 -7.1460 -6.5400 

AADT 0.7744 0.0153 0.00048 0.7441 0.8041 

Length 0.7874 0.0267 0.00059 0.7346 0.8394 

Std. Dev. 0.7289 0.0071 0.00013 0.7152 0.7430 

Dhar Dhat DIC pD 

90880 85300 96460 5578 
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Table A-3. Urban Multilane SPF. 

Confidence 

Interval 

Std. MC 

Mean Dev. Error 2.50% 97.50% 

Constant -7.5850 0.4079 0.0081 -8.3830 -6.7780 

AADT 0.8788 0.0445 0.0009 0.7913 0 .9655 

Length 1.0210 0.0490 0.0008 0 .9261 1.1180 

Std. Dev. 0.7461 0.0225 0.0005 0.7033 0.7911 

Obar Dhat DIC pD 

13450 12560 14340 892 

Table A-4. Rural Two-Lane SPF. 

Constant 

AADT 

Length 

Std. Dev. 

Dbar 

241300 

Std. MC 

Mean Dev. Error 

-6.2040 0.0381 0.00062 

0.7444 0.0048 0.00008 

0.9321 0.0186 0.00024 

0.6210 0.0061 0.00020 

Dhat DIC pD 

228300 254200 12920 
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Confidence 

Interval 

2.50% 97.50% 

-6.2780 -6.1290 

0.7349 0.7536 

0.8956 0.9687 

0.6092 0.6330 



Table A-5. Rural Interstate and Freeways SPF. 

Confidence 
Interval 

Std. MC 
Mean Dev. Error 2.50% 97.50% 

Constant -6.2060 0.2473 0.0046 -6.6850 -5.7210 

AADT 0.6751 0.0255 0.0005 0.6247 0.7243 

Length 0.7914 0.0601 0.0010 0.6752 0.9085 

Std. Dev. 0.6140 0.0103 0.0002 0.5938 0.6341 

Dbar Dhat DIC pD 

46620 44030 49200 2581 

Table A-6. Rural Multllane SPF. 

Constant 

AADT 

Length 

Std. Dev. 

Dbar 

5134 

Mean 

-7.0550 

0.8133 

0.8927 

0.6158 

Dhat 

4850 

Std. MC 

Dev. Error 

0.5055 0.0091 

0.0585 0.0011 

0.085 1 0.0013 

0.0381 0.0010 

·Drc pD 

5418 283.7 
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Confidence 
Interval 

2.50% 97.50% 

-8.0520 -6.0740 

0.7001 0.9291 

0.7269 1.0600 

0.5437 0.6919 



Appendix B: Model Development 

Severity of Outcome Models 

The following models incorporate the severity of outcome of the crash. The levels of severity 

included are those used by PennDOT: deaths, major injuries, moderate injuries, minor injuries, 

and property damage only (PDO). There are two analyses; in the first one, the response variable 

is the number of crashes classified by severity according to the maximum level of severity 

observed in that crash. In the second analysis, the response variable is the number of persons 

injured by severity of injury. For this analysis the count of crashes is used for PDO, since there 

are no injured persons in this type of crash. 

For the crash count models, the number of crashes is Poisson distributed: 

y ur - Poisson (e!lt) (7) 

where Jijt is the observed number of crashes in segment i of the type severity j at time t (in years), 

and Oijt are the expected Poisson crash rate for segment i of severity j at time t. The Poisson rate 

is modeled as a function of the covariates following a log-nonnal distribution, as shown is 

Equation 8: 

where Poj is the intercept for severity j, PAi is the coefficient for AADT for severity j, PI.j is the 

coefficient for segment length for severity j , and v1 captures the heterogeneity among segments. 

Now, one can assume that the coefficients for each severity type are independent, and therefore 

have the following prior distributions: 

Poj - N(O, 0.001),j= l:S 

pAj - N(o,0.001),j= l:s 

/3£.J - N(0, 0.001),j = l:S 

16 
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A more reasonable assumption is that the t;J.umber of crashes per severity level are positively 

correlated to each other, i.e. the higher the number of fatal crashes the higher the number of 

injury crashes. For these models, correlated priors in the coefficients are estimated using 

multivariate normal priors: 

Po,.., MN{µo, l:o) 

PA,..., MN(µA, ~A) 
PL,.., MN(pL, :i;L) 

(10) 

where µA is a vector of zeroes µA = (0, 0, 0, 0, 0, 0) and I A is the variance-covariance Matrix 

with a hyper-prior defined by: 

I ;.1 
- Wishart {R, n) (11) 

i:-1 
where A is a symmetric positive de.finite matrix, R is the scale matrix = 

0.1 0.005 0.005 0.005 0.005 

0.005 0.1 0.005 0.005 0.005 

0.005 0.005 0.1 0.005 0.005 

0.005 0.005 0.005 0.1 0.005 

0.005 0.005 0.005 0.005 0.1 

and n is the degrees of freedom = 5. 

For ranking of sites, the cost of the crash can be used. For this work, the costs associated with 

crashes were obtained from the 2006 Pennsylvania Crash Facts and Statistics report, published 

by PennDOT. In particular, excess crash cost was used. Excess crash cost is defined in Equation 
12: 

5 

'5-cost1, = L cost1'5!i, 
1-1 

17 
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where cost j is the average cost associated with a crash of severity j and but is the expected excess 

crash frequency for segment i, of the severity j, at time t defmed in Equation 13 : 

(13) 
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Appendix C: Model Formulations and Sample Output 

Background 

Task 3 of wo· 13 required the estimation of models .of crash risk that include socio-demographic 

attributes for two districts. In addition, the Penn State team developed specific SPFs for 

particular crash types. 

Model Development 

The authors explored two possibilities of two-level models in highway safety to include 

demographic and population factors in the mix. For this analysis we defined the first level unit to 

be the road segment and the second level unit to be the census tract. This formulation enabled 

the inclusion of socio-demographic information from census tracts in the PennDOT district of 

interest with the crash, roadway, and traffic attributes from C-DART. Using a variance 

components model we have: 

(14) 

where Yikt are the observed number of crashes in segment i and census track k at time t (in years), 

and eila is the expected Poisson rate for segment i and census track k at time t. The Poisson rate 

is modeled as a function of the covariates following a log-normal distribution as shown in 

Equation 2: 

(15) 

where X;Tct is the vector of covariates for segment i and census track k at time t, ~ is the vector of 

coefficients for the segment level fixed effects, Wk is the vector of covariates for census track k, 

y is the vector of coefficients for census track level fixed effects, Uk are the random effects across 

census tracks, and V;k are the random effects across segments. 

Now the random effects themselves are normally distributed. For the effects across tracks we 

have: 
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(16) 

where 'tu has a hyperprior: 

'fu - Gamma{0.001.0.001) (17) 

For the effects across segments: 

(18) 

where 'tv has a hyperprior: 

rv - Gamma(0.001.0.001) (19) 

Model Results 

The multi-level District 8 model in Table C-1 is a two-level specification. The response variable 

is the number of crashes that occurred on each segment during 2003 to 2006, and the explanatory 

variable includes road segment characteristic~ at level 1 and census track at level 2. The slope 

coefficients also vary randomly at the road segment level by functional classes: urban/rural 2-

lane, urban/rural interstate, and urban/rural multi-lane. 

One of the differences between multilevel models and standard multiple regression is the 

multilevel model has two random variables, u", a segment-level random variable, and vik, a tract-

level random variable. Standard multiple regression has only one random variable, called the 

error term. The correlation between two segments in the same track, which is referred to as the 

variance component variance (VPC), or intra.-leve12-unit correlation, is given by 

VPC = _ a_u-"-1 -
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This is the between-tract variance over the total variance. The higher the value ofVPC, the more 

similar two segments from the same tract are, compared to two segments picked at random from 

the population. The VPC in this model is 0.23, indicating a strong clustering effect of the tract. 

Clearly, in the presence of clustering, the assumption of independent observations in standard 

multiple regression is wrong, which can lead to incorrect inference. Fitting a model that does not 

recognize the presence of clustering creates serious problems such as underestimation of the 

standard error of regression coefficients. 

AADT and length of segment by different road types are inherently significant and positive, 

reflecting the fact that higher vehicle miles traveled increases the likelihood of crashes. 

Moreover, tracts with both higher population density and higher population have a significantly 

increased likelihood of crash occurrence. Though census tract variables of poverty proportion 

and-income greatly improve the goodness-of-fit, they are not significant in this model. 
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Table C-1. Multi-level district 8 model 

Percentile 

Mean SD 5o/o 10% 90% 95% Sig 

VPC 0.23 0.02 0.19 0.20 0.26 0.27 * 
Intercept_ Urban two-lane -3.64 0.31 -4.06 -4.00 -3.18 <-3.09 * 
Intercept_ Urban interstate -3.79 0.42 -4.48 -4.38 -3.27 -3.13 * 
Intercept_ Urban multi-lane -6.49 0.89 -7.90 -7.71 -5.39 -4.98 * 
Intercept_Rural two-lane -3.70 0.29 -4.22 -4.14 -3.34 -3 .28 * 
Intercept_ Rural interstate -2.59 0.58 -3.49 -3.29 -1.78 -1.67 * 
Intercept_ Rural multi-lane -6.63 1.38 -8.76 -8.23 -4.67 -4.17 * 
AADT Urban two-lane 0.68 0.02 0.64 0.65 0.71 0.72 * 
AADT Urban interstate 0.65 0.03 0.61 0.64 0.69 0.70 * 
AADT Urban multi-lane 1.00 0.09 0.84 0.87 1.12 1.15 * -

~ADT_Rural two-lane 0.69 0.01 0.67 0.68 0.70 0.70 * 
AADT Rural interstate 0.50 0.05 0.41 0.43 0.55 0.57 * 
AADT Rural multi-lane 0.94 0.14 0.66 0.73 1.10 1.15 * -

Length_ Urban two-lane 1.03 0.05 0.96 0.98 1.09 1.11 * 
lLeng.!)i _Urban interstate 0.88 0.07 0.77 0.79 0.96 0.99 * 
Length_ Urban multi-lane 1.15 0.12 0.96 1.00 1.30 1.35 * 
Length_Rural two-lane 0.89 0.04 0.82 0.83 0.94 0.96 • 
Length_Rural interstate K>.71 0.13 0.50 0.55 K>.89 0.94 * 
Length_Rural multi-lane 0.57 0.19 0.26 0.33 0.81 0.89 * 
Females_age W1der15 -0.03 0.01 -0.04 -0.04 -0.02 -0.02 * 
Females_age 15-17 -0.06 0.02 -0.10 -0.09 -0.04 -0.02 * 
Females_ age 18-24 0.00 0.01 -0.02 0.02 0.01 0.01 

Females_age 25-34 -0.01 0.01 -0.03 -0.03 0.01 0.01 

Females_age 50-59 -0.02 0.01 -0.04 -0.04 -0.01 -0.01 * 
Females_ age 60-69 0.03 0.01 0.01 0.01 0.05 0.05 * 
Females_ age above70 -0.03 K>.01 -0.04 -0.04 -0.02 0.02 * 
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Table C-1. Multi-level district 8 model (continued). 

Percentile 

Mean SD 5% 10%, 90% 95% Sig 

Males_age under15 -0.01 0.01 -0.03 -0.03 0.00 0.00 

Males_age 15-17 0.02 0.05 -0.05 -0.04 0.09 0.11 

Males_age 18-24 0.02 0.01 0.04 -0.04 -0.01 -0.01 * 
IMales_age 25-34 ... 0.01 0.01 -0.03 -0.03 D.00 0.00 

. Males_age 50-59 -0.05 0.01 -0.07 -0.07 -0.03 -0.02 * 
Males_ age 60-69 -0.09 0.02 -0.13 -0.11 -0.05 -0.05 * 
Males_age above70 0.02 0.01 ~.00 0.00 0.03 0.04 * 
!Population KUO KJ.01 KL08 0.09 0.11 Kl.12 * 
Population density 57.90 120.64 '.22.91 31.90 83.72 91.18 * 
Poverty proportion -0.14 0.55 ·l.05 -0.85 0.54 0.74 

Income 0.01 0.02 -0.02 -0.01 0.03 0.04 

Obar Dhat DIC oD 

84130 79679 88580 4450 
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To provide some insight into the implications of parameter estimation results, elasticities are 

computed to detennine the marginal effects of the independent variables (also refer to Shankar et 

al., 1995; Shankar et al., 1996; Ulfarsson, 2001; Washington et al., 2003). Elasticities provide an 

estimate of the impact of a variable on the expected frequency and are interpreted as the effect of 

a 1 percent change in the variable on the expected frequencyA,. Elasticity of frequency in log-

linear relation (log A. = a + /3x) is defined as 

E~ = o~ x :ik = /3,,x;11; 
""' uxik 1 

1 a2 a.A. x x 1 ln log-linear relation log.A.= a+Px --=/3 E =--= ~x-=f3x ' A.ax ' ax.A. P · A. 
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Where E represents the elasticity, xik is the value of the kth independent variable for observation 

i, /3k is the estimated parameter for the kth independent variable, and~ is the expected frequency 

for observation i. Note that elasticities are computed for each observation i. It is common to 

report a single elasticity as the average elasticity over all i. Note that elasticity of frequency in 

log-log relation (log A.= a + f3 log x) is defined as 

E l.; = o,\ x xik = f31c 
.lfl ,\ ax,k 2 

For example, a 1 percent increase in the AADT on an urban, two-lane road causes an average 

0.68 percent increase in crash frequency and a 1 percent increase in the population causes an 

aA. & a..i x ..i x 2 In log-log relation log A.= a+ f3logx ,-= /3- ,E =--= f3-x-= /3 
A. x oxA. x A. 
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ave.rage 0.1 percent increase in crash frequency, as shown in Table C-2. It must be noted that the 

elasticity on multi-lane roadways is always greater than elasticitities of two-lane roadways and 

interstates. It's important to note that we can't interpret the elasticities for length of segments, 

since it is defined by geometric characteristics. 

District 2-0 Model Results 

Resuts for District 2-0 are summarized in Table C-3. 
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Table C-2 District 8-0 Variable Elasticity 

Coefficients Elasticity Sig 
AADT_Urban two-lane 0.68 0.68. * 
AADT _Urban interstate 0.65 0.65 * 
IAADT_Urban multi-lane 1.00 1.00 * 
IAADT _Rural two-lane 0.69 0.69 * 
IAADT _Rural interstate 0.50 0.50 * 
AADT _Rural multi-lane 0.94 0.94 * 
Length_ Urban two-lane 1.03 1.03 * 
Length_ Urban interstate 0.88 0.88 * 
Length_ Urban multi-lane 1.15 1.15 * 
Length_Rural two-lane 0.89 0.89 * 
Length_ Rural interstate 0.71 0.71 * 
Length_ Rural multi-lane 0.57 ~.57 '* 

Females_age under15 -0.03 -0.58 * 
Fernales_age 15-17 -0.06 -0.23 * 
IFemales_age 18-24 0.00 0.00 
Females_age 25-34 -0.01 -0.13 
Female·s_age 50-59 -0.02 -0.23 * 
tFemales_age 60-69 kl.03 ~.11 * 
Females_ age above70 -0.03 0.38 * 
Males_age under15 -0.01 -0.21 
Males_age 15-17 0.02 0.09 
Males_age 18-24 -0.02 -0.18 ~ 

Males_age 25-34 -0.01 -0.13 
Males_age 50-59 '-0.05 -0.59 * 
Males_age 60-69 i-0.09 i-0.56 * 
Males_ age above70 ~.02 0.17 * 
!Population kl.IO 0.10 * 
Population density 57.90 0.06 * 
Poverty proportion -0.14 ... 0.01 
tincome ~.01 0.01 
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Table C-3 District 2-0 Model 

Percentile 
Mean SD 5% 10°/o 90% 95% Sig 

VPC 0.17 0.04 0.12 0.13 0.22 0.24 * 
Intercept_ Urb two- -2.03 1.14 -3.63 -3.37 -0.35 0.21 
Intercept_ Urb inters -3.95 2.16 -7.24 -6.35 -0.94 0.01 
Intercept_ Urb multi- -0.93 2.69 -5.39 -4.53 2.70 3.56 
Intercept_ Rural two- -2.86 1.03 -4.20 -3.98 -1.22 -0.85 * 
Intercept_ Rural -2.75 1.40 -4.55 -4.28 -0.58 0.12 
Intercept_ Rural -2.49 2.21 -6.06 -5.35 0.42 1.15 
AADT Urban two- 0.57 0.05 0.49 0.51 0.63 0.65 * 
AADT Urban 0.77 0.18 0.50 0.55 1.00 1.08 * -
AADT Urban multi- 0.47 0.26 0.04 0.14 0.81 0.89 * 
AADT _Rural two- 0.66 0.02 0.64 0.65 0.68 0.69 * 
AADT Rural 0 .65 0.10 0.47 0.50 0.77 0.79 * 
AADT Rural multi- 0.61 0.22 0.24 0.32 0.89 0.96 * 
Length_ Urban two- 0.91 0.10 0.75 0.78 1.05 1.09 * 
Length_ Urban 0.97 0.18 0.68 0.74 1.21 1.28 * 
Length_ Urban 1.25 0.24 0.86 0.94 1.56 1.66 * 
Length_ Rural two- 0.88 0.06 0.78 0.81 0.96 0.99 * 
Length_ Rural 1.23 0.21 0.90 0.97 1.50 1.57 * 
Length _Rural multi- 1.32 0.44 0.65 0.78 1.89 2.07 * 
Females_age -0.01 0.03 -0.07 -0.06 0.01 0.02 
Females_age 17 -0.06 0.07 -0.16 -0.14 0.04 0.06 
Females_age 24 -0.02 0.02 -0.07 -0.06 0.01 0.01 
Females_ age 34 -0.03 0.03 -0.08 -0.07 0.01 0.02 
Females_age 59 0.03 0.05 -0.04 -0.03 0.10 0.11 
Females_age 69 -0.02 0.05 -0.10 -0.08 0.04 0.06 
Females_age 0.01 0.02 -0.01 -0.01 0.04 0.05 
Income -0.13 0.09 -0.30 -0.25 -0.02 0.01 
Males_ age under15 0.01 0.02 -0.03 -0.02 0.04 0.05 
Males _age 17 0.00 0.05 -0.09 -0.07 0.06 0.08 
Males_ age 24 0.01 0.03 -0.03 -0.02 0.05 0.05 
Males _age 34 -0.01 0.03 -0.05 -0.04 0.03 0.04 
Males_ age 59 -0.03 0.04 -0.09 -0.08 0.02 0.03 
Males_ age 69 0.01 0.04 -0.05 -0.04 0.07 0.08 

Males_age above70 -0.04 0.03 -0.09 -0.08 0.00 0.01 
' 
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Table C-3 District 2-0 Model (continued). 
Percentile 

Mean SD 5% 10% 90% 95% Sig 
Population -0.06 0.09 -0.20 -0.18 0.06 0.08 
Population density 31.16 28.25 - -5.02 67.31 77.75 
Poverty proportion 0.01 0.01 -0.01 0.00 0.02 0.02 
sd.u 0.25 0.02 0.22 0.22 0.29 0.30 
sd.v 0.56 0.02 0.53 0.54 0.58 0.59 
sigma2.u 0.07 0.02 0.04 0.05 0.09 0.10 
sigma2.v 0.32 0.02 0.28 0.29 0.34 0.35 
tau.u 15.80 3.81 10.46 11.36 20.85 22.76 
tau.v 3.17 0.20 2.86 2.92 3.43 3.51 

Dbar Dhat DIC pD 
34933 33232 36634 1701 
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For the rural District 2-0, we see significance for intercepts, ADT and length for each of the 

facility types. Many fewer socio-demographic variables are significant. Poverty proportion and 

income both increase crash risk with reductions in socio-demographic status. These results are 

similar to those found at the county level in an earlier paper. 

Models of Specific Crash Types 

One additional aspect of Task 3 was the development ofSPFs for specific crash types. These are 

summarized for single and multi-vehicle run-off-road crashes in Tables C-4 and C-5, 

respectively. These models were derived by searching for run-off-road events as a crash type 

within the PennDOT crash data. Specifically, for the functional class of two-lane rural roads, the 

Penn State team included data from all single-vehicle, hit-fixed-object crashes that occurred off 

roadway (right and left). Multi-vehicle, head-on/sideswipe crashes are of interest because they 

are typically high severity. The relation to roadway variable necessary to identify this collision 

type would be "on travelway" and/or "in median." 

Once these data searches were complete, the SPFs were developed. 

Table C-4. Single Vehicle Run-off-road Crash SPF 

Intercept 

AADT 

Length 

sd(v) 

o2v 

Dhar 

178282 

Mean SD MC_error 

-5.6917 0.0469 7.54E-04 

0.6101 0.0058 9.21E-05 

1.0341 0.0240 3.63E-04 

0.7390 0.0081 2.92E-04 

0.~461 0.0124 4.45E-04 

Dhat DIC pD 

166706 189858 11576.1 

934 Significant excess crash risk segments 
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2.5% 

-5.7842 

0.5987 

0.9870 

0.7232 

0.5222 

97.5% 

-5.6001 

0.62 15 

1.0814 

0.7550 

0.5709 



Table C-5. Multi-Vehicle Head on and Sideswipe Crash SPF 

Intercept 

AADT 

Length 

sd(v) 

'u2v 

Dhar 

39009.8 

Mean SD MC error 

-10.1091 0.1224 0.00204 

0.8983 0.0145 0.00017 

0.8862 0.0553 0.00066 

0.7379 0.0265 0.00196 

0.5453 0.0392 0.00289 

Dhat DIC pD 

36949.3 41070.3 2060.48 

44 Significant excess crash risk segments 

2.5% 97.5% 

-10.3528 -9.8720 

0.8702 0.9269 

0.7784 0.9945 

0.6842 0.7865 

0.4679 0.6191 

Tables C-4 and C-5 illustrate models of single-vehicle run-off-road and multi-vehicle run-off-

road crash events. Note that 934 and 44 excess crash segments were identified; fewer segments 

are indicated for multi-vehicle crashes because they are more rare and have a higher variance, 

and thus fewer are significantly different from the mean for any specific ADT level. 
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End Note: Details of Bayes Estimation 

Models were estimated using the open source software Open BUGS. For the models, 3,000 
iterations were discarded as bum-in; an additional 5,000 iterations were used to obtain summary 
statistics of the posterior distribution of parameters. Convergence was assessed by visual 

inspection of the Monte Carlo Markov chains. Furthermore, the number of iterations was 
selected such that the Monte Carlo error for each parameter in the model would be less than 15 
percent of the value of the standard deviation of that parameter. 

The hierarchical modeling structure (Full Bayes) produces what are called 5 percent and 95 

percent credible set estimates instead of the confidence intervals nonnally produced in 

frequentist estimation. Parameters that have 5 percent to 95 percent credible set values that do 

not include 0 are generally accepted as "significant." The last column contains a " * " for a 
significant. 
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